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ABSTRACT
The ongoing evolution and mutation of SARS-CoV2 pose a significant challenge to the
development of effective medication, as genetic changes can render previously developed
drugs ineffective. To address this issue, researchers are exploring various strategies to predict
and assess the emergence of novel SARS-CoV2 strains through phylogenetic analysis and
mutation prediction. In recent years, deep learning approaches have been applied to study-
ing viruses, including SARS-CoV2, to improve our understanding of virus evolution, structure,
categorization, and prediction. In this study, a novel deep learning approach is proposed to
predict and assess SARS-CoV2 protein sequences. Specifically, Long Short-Term Memory
(LSTM) is utilized to predict protein sequences from aligned input sequences, with a bio-
informatics tool used to detect mutations. The deep learning model proposed in this study
exhibits high accuracy in predicting several key SARS-CoV2 protein sequences, including
spike, replicase, putative, ORF1a, and nucleocapsid. The study uses genome sequencing data
from the National Center for Biotechnology Information (NCBI) and demonstrates a 98%
accuracy in predicting genomic sequences, with minimal changes observed in protein
sequences. This study represents a significant improvement over previous research, which
has focused only on predicting mutations in viral RNA sequences using datasets from other
viruses.
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1. Introduction

Adenine (A), thymine (T), cytosine (C), and guanine
(G) are the four nitrogen-containing nucleobases
that make up all nucleotides (G). The RNA sequence
differs from the DNA sequence because it has a
more significant mutation and is more stable
(Mohamed, Sayed, Salah, & Houssein, 2021). SARS-
CoV-2 is scattering rapidly due to the inaccuracy of
current recognition technologies (Lopez-Rincon
et al., 2021). SARS-CoV-2, on the other hand, is a typ-
ical RNA virus that generates new mutations in a
Coronavirus replication cycle, including 10-4 nucleo-
tide substitutions per year is the usual evolutionary
rate each year per site (Lu et al., 2020). SARS-CoV2
belongs to the Coronaviridae family (Whata &
Chimedza, 2021), and its identification can be chal-
lenging due to mutations. So, this paper has
explored the concepts of detecting the mutation
and prediction of sequences using the deep learning
method. Having access to current virus mutations
and prior evolution could help researchers better

understand virus evolution dynamics and predict
future viruses and diseases (Shendure & Ji, 2008).

In human disease genetics, the prediction of gen-
etic mutations is a hot topic (Stranger & Dermitzakis,
2006). Knowing about current virus generations and
their prior evolution could serve to understand the
dynamics of virus evolution and forecast future
viruses and diseases (Shendure & Ji, 2008). The
ancestral sequence of these species is inferred via
phylogenetic analysis, which determines the evolu-
tionary relationship between them. These evolution-
ary connections between RNA sequences can help
anticipate which lines may have the same function
(Xu et al., 2015).

This paper presents several significant contribu-
tions in the field of bioinformatics. First, a novel
method is proposed for the alignment of protein
sequences to identify mutations and assess the simi-
larity between genomic sequences. This technique
employs advanced algorithms for sequence align-
ment and statistical analysis, enabling accurate and
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reliable comparisons of protein sequences. Second,
an evolution tree is generated for the protein
sequences of SARS-CoV2, providing insight into the
relationships and origins of different strains of the
virus. Third, a Long Short-Term Memory (LSTM)
based Encoder-Decoder deep learning model is
developed to predict mutations in protein sequences
of SARS-CoV2. This model utilizes machine learning
algorithms to analyze large datasets of protein
sequences and associated mutation data, enabling
accurate predictions of specific mutations in the viral
genome. Finally, it also presents a method for pre-
dicting nucleotide changes and identifying new
strains of the virus in the new generation. Overall,
these contributions represent significant advances in
the study of SARS-CoV2 and provide valuable tools
and techniques for understanding the virus’s evolu-
tion, pathogenicity, and potential for developing
new treatments and vaccines. Hence, the approach
taken in this study provides a more comprehensive
analysis of the mutations present in SARS-CoV2 pro-
tein sequences and has the potential to improve our
ability to predict and respond to emerging strains of
the virus.

There are several tools available for aligning pro-
tein sequences, including:

Clustal Omega: This is a popular online tool for
multiple sequence alignment of proteins. You can
input up to 500 sequences in FASTA or Clustal for-
mat and choose different options for alignment
parameters. The output can be visualized as an
alignment or a tree (Sievers & Higgins, 2018).

MUSCLE: This is another online tool for protein
sequence alignment. It allows you to input up to
500 sequences and provides options for alignment
parameters, such as the gap opening penalty and
the gap extension penalty (Edgar, 2004).

T-Coffee: This tool provides a variety of align-
ment methods and allows you to input multiple
sequence formats, including FASTA, EMBL, and
UniProt. T-Coffee also allows you to visualize the
alignment output in a variety of ways (Taly et al.,
2011).

BioEdit: It is a popular desktop software tool for
sequence alignment, visualization, and analysis. It is
widely used by researchers and has many useful fea-
tures for working with DNA, RNA, and protein
sequences. One of the key features of BioEdit is its
ability to align multiple sequences using a variety of
algorithms, including ClustalW, T-Coffee, and
MUSCLE. The software also allows for manual editing
of alignments, which can be useful for fine-tuning
the alignment or correcting errors. In addition to
alignment, BioEdit can be used for a variety of other
tasks, such as sequence annotation, primer design,
and restriction enzyme analysis. The software also

includes visualization tools, such as the ability to
generate graphical representations of alignments or
sequence features (Hall, 1999; Tomita, Mori, &
Mochizuki, 2015; Carvalho, Fischer, & Chen, 2009).

Alternatively, we can use bioinformatics software
packages, such as MEGA, which allow you to align
multiple sequences, generate phylogenetic trees,
and perform other analyses. These software pack-
ages are typically more powerful and flexible than
online tools but require more expertise to use
effectively.

There have been various traditional machine
learning approaches like Support Vector Machine
(SVM), Logistic Regression (LR), Random Forest (RF),
and various deep learning approaches for predicting
the sequences like Recurrent Neural Network (RNN),
Gated Recurrent Unit (GRU), Long Short Term
Memory (LSTM). The advantage of using the deep
learning approach is that it permits variable length
sequences as input and output. Long Short Term
Memory has been extensively used in the literature
for predicting the genomic sequences of other
viruses. Because LSTM is capable of capturing the
longer sequences with several gating mechanisms
(Zhou et al., 2023).

Predicting mutations in protein sequences is an
important task in the field of bioinformatics, and
there are several tools and techniques available to
do so. One approach is to use in silico methods to
predict the impact of mutations on protein structure
and function. This can be done using software pro-
grams that analyze the effects of amino acid
changes on the physical and chemical properties of
the protein, such as its stability, solubility, and inter-
actions with other molecules. Another approach is to
use machine learning algorithms to predict the likeli-
hood of specific mutations occurring in a given pro-
tein sequence. Machine learning models can be
trained on large datasets of protein sequences and
associated mutation data to learn patterns and make
predictions about the likelihood of specific mutations
occurring. Overall, predicting mutations in protein
sequences is an important area of research for
understanding the evolution and pathogenicity of
SARS-CoV-2, as well as for developing new treat-
ments and vaccines (Kumar, Stecher, & Tamura,
2016).

The following is the structure of the entire paper:
The introduction to the research work is included in
Section 1. Section 2 contains a review of previous
research. Section 3 details the data sources and
methods used in the prediction. The intended work’s
outcome is shown in Section 4. Finally, section 5
summarizes the work that can be done and its
future scope.
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2. Literature review

SARS-CoV-2 is an RNA virus, and like all RNA viruses,
it has a high mutation rate. Mutations are changes
in the genetic material (in this case, RNA) of the
virus. Mutations can be beneficial, harmful, or neutral
to the virus, depending on their effects on the virus’s
survival and ability to replicate. There have been
many mutations identified in SARS-CoV-2 since the
start of the pandemic. Some of these mutations are
more significant than others and can affect the
behavior of the virus. One particular mutation,
known as the D614G mutation, has been associated
with increased transmissibility of the virus. Other
mutations have been identified in the spike protein
of the virus, which is the protein that allows the
virus to enter and infect human cells. Some of these
mutations may make the virus more infectious or
more resistant to antibodies generated by vaccin-
ation or previous infection. It’s important to note
that not all mutations are necessarily a cause for
concern. Many mutations may not affect the behav-
ior of the virus or may even weaken the virus.
However, monitoring mutations is an important part
of understanding how the virus is evolving and how
it may respond to vaccines and treatments. That’s
why ongoing genomic surveillance is crucial in track-
ing the spread and evolution of SARS-CoV-2
(Rambaut et al., 2020).

The mutation rate of the complete genome
sequence of SARS-CoV-2 has been investigated using
patient datasets from various countries. Based on
the collected data, specific nucleotide and codon
mutations have been identified. The mutation rate
has been divided into four groups according to the
dataset size: China, Australia, the United States, and
the rest of the world. Although codons have a lower
mutation rate than nucleotides, a substantial number
of thymine (T) and adenine (A) nucleotides have
been found to change to other nucleotides in all
locations. The Long Short-Term Memory (LSTM)
model has been used to predict the nucleotide
mutation rate of the 400th patient. The mutation
rate increases by 0.1 percent when nucleotides
change from T to C and G, C to G, and G to T,
whereas changing T to A and A to C lowers the
score by 0.1 percent. The study explores how COVID-
19 genomic sequences can be utilized to extract
meaningful information using artificial intelligence
methods. Sequential Pattern Mining (SPM) is first
applied to a corpus of machine-readable COVID-19
genome sequences to determine whether any sig-
nificant hidden patterns, such as recurrent patterns
of nucleotide bases and their interactions, may be
discovered. Sequence predictions are then applied to
the corpus to determine whether nucleotide bases
can be anticipated from earlier ones. Finally, an

algorithm is developed for genome sequence muta-
tion analysis to identify regions in genome sequen-
ces where nucleotide bases change and to
determine the mutation rate. The results demon-
strate that by utilizing SPM and mutation analysis
techniques, it is possible to detect intriguing trends
in the COVID-19 genomic sequences, allowing for
the evaluation of the evolution and variability of
COVID-19 strains (Pathan, Biswas, & Khandaker, 2020;
Nawaz, Fournier-Viger, Shojaee, & Fujita, 2021).

Few Researchers used the seq2seq LSTM neural
network to predict next-generation sequences by
using the method while treating the sequences as
textual data (Mohamed et al., 2021). As a result of
using single hot vectors as input, the model retains
the important information position of each nucleo-
tide in the sequences. Two RNA virus sequencing
datasets were used to test the proposed model, and
the findings were promising. The results show how
the LSTM neural network for DNA and RNA sequen-
ces can be used to handle a variety of bioinformatics
sequencing difficulties (Chen, Gao, Wang, & Wei,
2021). examines the mechanism, frequency, and ratio
of mutations in the S protein, which is a frequent
target of the majority of COVID-19 vaccines and anti-
body treatments. 56 antibody constructions were
also generated, and their 2D and 3D properties were
studied. Additionally, it is anticipated that mutations
will change the binding free energies (BFE) of S pro-
tein and antibody or ACE2 complexes. The majority
of the 462 mutations on the receptor-binding
domain (RBD) degrade the binding of S protein and
antibodies, jeopardizing the effectiveness and
dependability of antibody treatments and vaccina-
tions, according to research that combines genetics,
biophysics, deep learning, and algebraic topology
(Nguyen et al., 2021). Utilizing deep learning
approaches, this study describes and analyses gen-
etic changes in SARS-coding CoV-2 areas, as well as
their predicted effects on protein secondary struc-
ture and solvent accessibility. The predictions indi-
cate that the highly publicized mutation D614G in
the viral spike protein is unlikely to affect the pro-
tein’s secondary structure or relative solvent avail-
ability. Based on 6324 viral genome sequences, the
author created a mutational spreadsheet dataset to
support research into SARS-CoV-2 from a variety of
angles, particularly in tracing the virus’s evolution
and global distribution. The results also demonstrate
that E, M, ORF6, ORF7a, ORF7b, and ORF10 are the
most stable coding genes, suggesting that these
genes may be used to create vaccines and
treatments.

The most recent COVID-19 pandemic is currently
raging, with new strains including surprising
changes. Understanding how to predict virus
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alterations has important implications for developing
vaccines and medications, and prevention strategies.
Because the number of reported changes in SARS-
CoV-2 is currently restricted, creating a prediction
model employing virus data with many mutations,
such as the influenza A virus, would be advanta-
geous and straightforward. The likelihood mutation
sites and changed amino acids in hemagglutinins
from the Eurasia H1 influenza A virus were predicted
using a neural network with a feedforward backpro-
pagation algorithm in this study (Yan & Wu, 2021).
The purpose of the study is to use one of the most
comprehensive data sets available, which includes
506,768 SARS-CoV-2 genome sequences, to follow
fast-spreading RBD mutations in pandemic-affected
countries and investigate their evolutionary tenden-
cies around the world. There were 6945 unique sin-
gle mutations found on the S protein, with 1024 of
them occurring on the RBD. 100 of the 651 non-
degenerate variants on the RBD were detected more
than 28 times in the database and deemed signifi-
cant protein sequence alterations. Also, it showed
that in addition to the N501Y, E484K, and K417N
modifications in the UK, South Africa, and Brazil var-
iations, L452R, E484Q mutations in India, S477N,
N439K, S477R, and N501T variations in 31 disease
outbreak countries in the last few months, N439K,
S477R, S477N, and N501T mutations (Wang, Chen,
Gao, & Wei, 2021).

There are many deep learning models that can be
used for predicting amino acid sequences. Some of
the latest models are, Alphafold which is developed
by DeepMind, Alphafold uses deep learning to pre-
dict the 3D structure of proteins. It won the 2020
CASP14 competition by accurately predicting the
structures of 25 out of 43 proteins. RoseTTAFold,
which is developed by the University of Washington,
RoseTTAFold uses a combination of deep learning
and template-based modeling to predict the 3D
structure of proteins. It outperformed other methods
in the CASP14 competition. TAPE which is developed
by the University of California, Berkeley, TAPE (The
TAProot Ensemble) is a deep learning model that
can predict various protein properties, including sec-
ondary structure, solvent accessibility, contact predic-
tion, and remote homology detection. ProGenc,
which is developed by Stanford University, ProGen is
a deep learning model that can predict the amino
acid sequence of a protein from its 3D structure.
UniRep which is developed by Harvard University,
UniRep is a deep learning model that can encode
protein sequences into fixed-length vectors that can
be used for various downstream tasks, such as pro-
tein function prediction and protein-protein inter-
action prediction. These models are constantly being
improved upon and new models are also being

developed, so it’s always worth keeping up to date
with the latest research in the field.

3. Data source and methods

3.1. Data source

Predicting SARS-CoV-2 mutations is a complex task
that requires expertise in both bioinformatics and
deep learning. LSTM encoder-decoder models have
been used in many natural language processing
tasks, but they can also be applied to sequence pre-
diction tasks, such as SARS-CoV-2 mutation predic-
tion. Our evaluation collected the dataset from the
National Center for Biotechnology Information (NCBI)
(National Center for Biotechnology Information
\(NCBI\) Bethesda \(MD\), 1988). Total 250 SARS-CoV2
variants were considered (Sah, Surendiran, &
Dhanalakshmi, 2023). This is the world’s largest data-
set repository for genomic sequences. The informa-
tion gathered pertains to all protein sequences. Our
dataset is in FASTA format. The experimental setup
for predicting the mutation rate of sequences is
shown in Table 1.

Table 1 contains information about the experi-
mental requirements for the proposed work.

An LSTM-based model can be trained on a large
dataset of protein sequences and their correspond-
ing mutation information to learn patterns and rela-
tionships between the sequences and mutations.
The model can then be used to predict mutations in
new protein sequences based on those patterns and
relationships. In the case of SARS-CoV-2, an LSTM-
based model can be trained on a dataset of protein
sequences from different strains of the virus and
their associated mutation information. The model
can learn how different mutations affect the struc-
ture and function of the viral proteins and use that
knowledge to predict the effects of new mutations.
The input to the model is a sequence of amino acids
that make up the protein, and the output is the pre-
dicted mutation(s) and their effects on the protein.
The model uses the previous state of the LSTM to
encode the sequence and then decodes it to gener-
ate the prediction. The LSTM model can be a

Table 1. Experimental setup for the proposed model.
Dataset Used Genomic Sequence

Dataset Format FASTA
Deep Learning Model LSTM (For predicting sequences)
Language Python
Software Colab
Training Data 80%
Validation Data 20%
Activation Function Softmax
Epoch 50
Batch Size 10
Loss Categorial Cross entropy
Optimizer Adam
Bio informatics Tool Bioedit (For analyzing sequences)
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powerful tool for predicting mutations in protein
sequences, but it is important to note that the accur-
acy of the predictions depends on the quality and
size of the training dataset, as well as the features
and parameters of the model itself.

Amino acids are a group of 20 chemicals that
make up proteins. Proteins are made up of polypep-
tides, long chains of amino acids. The amino acid
chain sequence causes the polypeptide to fold into a
physiologically active form. Protein amino acid
sequences are stored in the genes (Smith, 2019; Sah,
Surendiran, Dhanalakshmi, & Kamerkar, 2021).
Annexure 1 shows the protein names considered for
the experimentation, showing the entire common
amino acid sequences and sequence length for each
protein after alignment. The amino acid sequences
are collected from NCBI (National Center for
Biotechnology Information \(NCBI\) Bethesda \(MD\),
1988).

3.2. Proposed LSTM model

Long short-term memory (LSTM) is a variant of RNNs
(Hochreiter & Schmidhuber, 1997) that can learn
long-term dependencies and is specifically designed
to avoid the problem of long-term dependencies. In
the context of protein sequence prediction, LSTMs
have been used to predict the secondary structure
of proteins, as well as the binding affinity between
proteins and ligands. LSTMs can also be used to pre-
dict the sequence of a protein from its genetic
sequence, which is an important step in drug design
and other bioinformatics applications. LSTMs work
by passing information through a series of "gates"
that control the flow of information through the net-
work. These gates allow the LSTM to selectively
remember or forget previous inputs, which enables
it to maintain a long-term memory of the input
sequence. The output of the LSTM is then used to
make a prediction about the next item in the
sequence. To train the LSTM model, the protein
sequence data is converted to one-hot encoded

format using the np.eye(n_classes) function, which
creates an identity matrix with n_classes rows and
columns. Each row of the identity matrix corre-
sponds to an amino acid, and each column corre-
sponds to a position in the protein sequence. The
seq_data_one_hot variable is a 3D numpy array with
shape (n_samples, max_seq_len, n_classes). The
LSTM model is defined using the Keras Sequential
model API, with one LSTM layer and one dense out-
put layer. The model is compiled with the appropri-
ate loss function and optimizer.

The protein sequence data is split into training
and validation sets, and the model is trained using
the fit method of the Keras Sequential model API.
Table 2, shows the flow and contribution for the pro-
posed work.

Protein sequences can be fed into an LSTM model
for training using Python and the Keras deep learn-
ing library. A LSTM unit has a cell/node, an input
gate, an output gate, and a forget gate at its base.
The node considers values during particular time
intervals, while the input/output gates control the
information flow (Koumakis, 2020). Long Short-Term
Memory (LSTM) model is proposed to predict the
amino acid sequences or protein sequences of the
virus. The proposed work consists of a few steps. In
the initial step, the protein sequence is prepro-
cessed. Before alignment total sequences considered
were 149, each length varying from 5k to 6k. After
alignment, the sequence length considered as shown
in Table 3.

Now, the LSTM model applies one hot encoding
representation of the sequences to the same-length
input. The one-hot encoded vector is added by each
LSTM cell to the hidden state and cell state vectors.
The third phase of the encoder output is the cell
state and hidden state concealed values vectors.
With the exception of the first cell, which receives its
cell and hidden states directly from the encoder,
each subsequent cell now derives its cell and hidden
states from the one before it. The probability distri-
bution of the word at position t in the succeeding

Table 2. Contribution summary.
Contribution Approach

Collected Amino Acid Sequences or Protein Sequences from several
SARS-CoV2 nucleotide sequences that we classified using machine
learning approaches.
Alignment of amino acid sequences done.

Bioinformatics Approach
(Step 1)

Predicted mutation as no literature explored the prediction of protein
sequences of SARS-CoV2.

Deep Learning Approach
(Step 2)

Table 3. Total length of protein sequences before and after alignment.
Protein Total Sequences Considered After Alignment Length

Nucleocapsid protein 32 422
ORF1a 65 4377
Putative Spike Glycoprotein 26 1255
Replicase 45 4376
Spike Glycoprotein 101 1255
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generation sequence is predicted using the dense
layer. A phylogenetic tree is a branching diagram
that represents the evolutionary relationships among
a set of organisms or sequences, based on the simi-
larities and differences in their genetic or protein
sequences. In the case of SARS-CoV-2, a phylogenetic
tree can be constructed using the amino acid
sequences of the virus. The tree can help to visualize
the evolutionary history of SARS-CoV-2, and can be
used to identify the origin of the virus, its transmis-
sion patterns, and the emergence of new variants.
The tree is typically constructed using bioinformatics
software that can align the amino acid sequences,
calculate the genetic distances between them, and
infer the branching patterns. One common software
used to construct phylogenetic trees is MEGA
(Molecular Evolutionary Genetics Analysis), which can
handle large datasets and provide various options
for phylogenetic analysis, including maximum likeli-
hood, neighbor-joining, and Bayesian inference.
Other software tools used for phylogenetic analysis
include RAxML, PhyML, and BEAST. The resulting
tree can be visualized using software such as FigTree
or iTOL (Interactive Tree of Life), which allows for fur-
ther customization and annotation of the tree. The
phylogenetic tree can provide valuable insights into
the evolution and diversity of SARS-CoV-2, and can
inform public health measures and vaccine develop-
ment strategies.

Workflow:

Step 1: Import necessary Libraries
Step 2: Load Amino Acid Sequences
Step 3: For each sequence, map unique chars to inte-
ger by creating dictionary

Step 4: Prepare the genomic dataset of input to output
pairs encoded as integer

Step 5: Reshape the data
Step 6: Apply one hot encoding
Step 7: Define LSTM model
Step 8: Define the checkpoint
Step 9: Fit the model
Step 9: Load the network weights
Step 10: Compute Accuracy

Figure 1, shows the workflow for the proposed
work for predicting the mutations in the protein
sequence.

The mutations in SARS-CoV-2 can have a signifi-
cant impact on pathogenicity, diagnostics, therapeu-
tics, and vaccines. Here are some of the ways in
which mutations can impact each of these areas
(Centers for Disease Control & Prevention, 2021;
World Health Organization, 2021; Korber et al., 2020;
Lauring & Hodcroft, 2021):

i. Pathogenicity: Mutations in SARS-CoV-2 can
affect how the virus interacts with the host
cells, leading to changes in the severity of the
disease. For example, some mutations have
been associated with increased transmission
and more severe disease, while others have
been associated with decreased virulence.
Mutations in the spike protein can affect the
virus’s ability to bind to the ACE2 receptor on
host cells, which is a key step in the viral infec-
tion process.

ii. Diagnostics: Mutations in SARS-CoV-2 can
impact diagnostic tests, particularly those that
rely on detecting viral RNA. For example, some

Figure 1. Proposed model for predicting the sequences.
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mutations can cause false negative results in
PCR tests, which can lead to incorrect diagnoses
and potentially contribute to the spread of the
virus. New strains of the virus that carry mul-
tiple mutations may require updates to existing
diagnostic tests to ensure their accuracy.

iii. Therapeutics: Mutations in SARS-CoV-2 can
impact the effectiveness of therapeutic treat-
ments. For example, some mutations in the
spike protein can affect the binding of neutraliz-
ing antibodies, making certain treatments less
effective. The emergence of new strains of the
virus can also impact the effectiveness of exist-
ing treatments and require the development of
new therapies.

iv. Vaccines: Mutations in SARS-CoV-2 can impact
the effectiveness of vaccines. For example,
mutations in the spike protein can affect the
ability of the immune system to recognize and

neutralize the virus. If a mutation occurs in a
region of the virus that is targeted by a vaccine,
it can reduce the vaccine’s effectiveness. The
emergence of new strains of the virus may
require the development of updated or new
vaccines to ensure their effectiveness.

While complementary and alternative medicinal
plants, such as 6-shogaol, have been shown to have
potential therapeutic properties, their effectiveness
as a treatment for an evolving virus like SARS-CoV-2
is uncertain, and they should not be used as a
replacement for conventional treatments. 6-shogaol
is a natural compound found in ginger and has
been studied for its potential medicinal properties,
including antiviral activity. Some studies have sug-
gested that 6-shogaol may have activity against vari-
ous viruses, including influenza, herpes simplex virus,
and respiratory syncytial virus. However, there is

Figure 2. Alignment of replicase proteins.
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currently no clinical evidence to support the use of
6-shogaol as a treatment for COVID-19, and more
research is needed to determine its safety and
effectiveness.

It is important to note that conventional treat-
ments, such as vaccines, antiviral drugs, and support-
ive care, have undergone rigorous testing and have
been shown to be effective in treating COVID-19.
While complementary and alternative medicinal
plants may have potential benefits, they should be
used in combination with, and not as a replacement
for, conventional treatments.

4. Results & discussion

To find the mutations, our work consists of an align-
ment of protein sequences using bioinformatics tools
like bioedit. In order to provide various fundamental
functions like editing, aligning, manipulating, and
analysing protein and nucleic sequences, BioEdit is a
biological sequence editor that works on Windows.
Although it lacks the capacity of more robust
sequence analysis applications. BioEdit tool provides
a number of quick and simple functions for

annotating, editing, and manipulating sequences.
Genomic sequence alignment is a way of arranging
the protein sequences or DNA sequences to figure
out similar regions which may be a reason of evolu-
tionary relationships between the genomic sequen-
ces (Hall, 2004). Alignment of sequences has been
performed to find the point mutations. Figure 2
shows the alignment of replicase protein sequences,
here multiple replicase proteins have been consid-
ered which is found common for SARS-CoV2 differ-
ent variants. The tool will align the sequences and
save the aligned sequences in FASTA format. A
phylogenetic tree is a branching diagram that repre-
sents the evolutionary relationships among a set of
organisms or sequences, based on the similarities
and differences in their genetic or protein sequen-
ces. In the case of SARS-CoV-2, a phylogenetic tree
can be constructed using the amino acid sequences
of the virus. The tree can help to visualize the evolu-
tionary history of SARS-CoV-2, and can be used to
identify the origin of the virus, its transmission pat-
terns, and the emergence of new variants. The tree
is typically constructed using bioinformatics software
that can align the amino acid sequences, calculate

Figure 3. Phylogenetic tree of replicase proteins.
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the genetic distances between them, and infer the
branching patterns. One common software used to
construct phylogenetic trees is MEGA (Molecular
Evolutionary Genetics Analysis), which can handle
large datasets and provide various options for phylo-
genetic analysis, including maximum likelihood,
neighbor-joining, and Bayesian inference. Other soft-
ware tools used for phylogenetic analysis include

RAxML, PhyML, and BEAST. The resulting tree can be
visualized using software such as FigTree or iTOL
(Interactive Tree of Life), which allows for further cus-
tomization and annotation of the tree. The phylo-
genetic tree can provide valuable insights into the
evolution and diversity of SARS-CoV-2, and can
inform public health measures and vaccine develop-
ment strategies. Figure 3 shows the phylogenetic or

Figure 4. Alignment of putative spike GlycoProteins.

Figure 5. Phylogenetic tree of putative spike glycoproteins.
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Figure 6. Alignment of nucleocapsid proteins.

Figure 7. Phylogenetic tree of nucleocapsid proteins.
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Figure 8. Alignment of spike proteins.

Figure 9. Phylogenetic tree of spike proteins.
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evolution tree of replicase proteins which estimates
the relationships among the sequences. This estima-
tion can help in prescribing vaccines against them.
This might give birth to new treatment options and
also standing the progression of the virus.

The study of the link between biological lineages
that have a common ancestor is known as phyl-
ogeny. To infer phylogeny, the differences between
aligned sequences of genomes and proteins are
measured and presented in the form of a tree, with
modern species, intermediates, and common ances-
tors occupying the terminal nodes, internal nodes,
and root, respectively. The tree’s topology, branch
length, shape, and root position are distinct features
(Gorbalenya & Lauber, 2017).

Figure 4 shows the alignment of Spike
GlycoProtein sequences, here multiple GlycoProtein
proteins have been considered which is found com-
mon for SARS-CoV2 different variants. The tool will
align the sequences and save the aligned sequences
in FASTA format. Figure 5 shows the phylogenetic or
evolution tree of Spike GlycoProteins.

Figure 6 shows the alignment of Nucleocapsid
protein sequences, here multiple Nucleocapsid

proteins have been considered which is found com-
mon for SARS-CoV2 different variants. The tool will
align the sequences and save the aligned sequences
in FASTA format. Figure 7 shows the phylogenetic or
evolution tree of Nucleocapsid proteins.

Figure 8 shows the alignment of Spike protein
sequences, here multiple Spike proteins have been
considered which is found common for SARS-CoV2
different variants. The tool will align the sequences
and save the aligned sequences in FASTA format
and Figure 9 shows the phylogenetic or evolution
tree of Spike proteins.

Figure 10 shows the alignment of ORF1a protein
sequences, here multiple ORF1a proteins have been
considered which is found common for SARS-CoV2
different variants. The tool will align the sequences
and save the aligned sequences in FASTA format.
and Figure 11 shows the phylogenetic or evolution
tree of ORF1a proteins.

Now, after alignment and generation of evolution
tree for the protein sequences, the next step Seq-2-
Seq LSTM based encoder-decoder model is proposed
in work. To predict the amino acid sequences and
the future mutations deep learning approach is

Figure 10. Alignment of ORF1a proteins.
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used. Below is Table 4. This table shows that the
various protein sequences are being trained to pre-
dict the future sequence mutation, which consists of
the time taken to perform each step and the associ-
ated loss. The model is trained for 50 epochs, with
batch size 10 for optimization. The model consists of
adam optimizer. The learning rate considered is

0.001 with 100 hidden neurons. The dropout value
considered is 0.5. The proposed model is trained in
Colab. The metric considered is accuracy for model
performance

Below we can see the similarity between various
amino acid sequences or protein sequences. The
analysis should show that the sequences were more

Figure 11. Phylogenetic tree of ORF1a proteins.

Table 4. Training of various protein sequences [sample].
Spike Protein Nucleocapsid Replicase Polyprotein Putative ORF1a

Epoch

Time taken
to perform
each step
(in ms) Loss

Time taken
to perform
each step
(in ms) Loss

Time taken
to perform
each step
(in ms) Loss

Time taken
to perform
each step
(in ms) Loss

Time taken
to perform
each step
(in ms) Loss

Time taken
to perform
each step
(in ms) Loss

1 565 2.9984 650 3.0332 638 2.9703 634 2.9689 537 3.0166 662 2.9675
2 572 2.9791 648 2.9901 637 2.9579 640 2.9567 537 2.9880 671 2.9540
3 573 2.9118 640 2.9819 637 2.9492 636 2.9510 547 2.9828 741 2.8866
4 569 2.5597 639 2.9774 640 2.9232 638 2.9296 548 2.9797 657 2.5805
5 577 2.9463 641 2.9679 642 2.8284 641 2.8502 548 2.9784 654 2.6520
6 579 2.6987 641 2.9430 639 2.2152 644 2.2895 546 2.9758 645 2.9682
7 577 1.8095 642 2.8846 642 2.7760 642 2.9631 548 2.9619 652 2.9458
8 578 0.9822 646 2.8846 615 2.9826 640 2.9737 548 2.9265 663 2.9371
9 579 1.5924 641 2.7742 638 2.9430 640 2.9426 547 2.8925 650 2.9278
10 577 1.4703 642 2.6512 638 2.9255 643 2.9294 544 2.8475 652 2.6957
11 576 1.6648 650 2.6441 655 2.9094 642 2.9242 544 2.6904 645 2.6570
12 579 0.3274 639 2.6511 668 2.8832 642 2.9330 548 2.3366 650 2.5432
13 588 0.1482 639 2.6432 642 2.9188 645 2.8974 545 1.6613 657 2.4531
14 569 0.0875 641 2.6452 638 2.8148 656 2.8749 547 2.8181 662 2.5641
15 591 0.0721 639 2.6532 639 2.2222 663 2.8581 545 2.9816 659 2.6754
16 590 0.0499 638 2.6511 645 1.3474 669 2.8508 544 2.8914 651 2.5421
17 587 0.0442 638 2.6511 638 0.7237 657 2.4815 545 2.6995 655 2.7654
18 587 0.0394 638 2.6452 629 3.0311 659 1.5647 548 2.1195 653 2.4315
19 589 0.0419 639 2.6511 633 2.9346 653 0.7270 547 1.4188 678 2.2314
20 592 0.0322 639 2.6511 631 2.8619 643 0.3370 549 1.0359 654 2.1800
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similar to each other. Very few mutations were
found in the sequences. This result is based on the
dataset which is used. Table 5 shows the average
pairwise similarity percentage between amino acid
sequences of SARS-Cov2.

Finally, the predicted amino acid sequences are
approximately 98% similar to the trained amino acid
sequence, and the mutations observed were negli-
gible due to the high similarity between the amino
acid sequences. The accuracy metrics basically deter-
mine the correct predictions that a trained deep-
learning model achieves.

5. Conclusion

In summary, mutations in SARS-CoV-2 can have sig-
nificant impacts on pathogenicity, diagnostics, thera-
peutics, and vaccines. It is important for researchers
and public health officials to monitor the evolution
of the virus and its mutations to ensure that diag-
nostic tests, treatments, and vaccines remain effect-
ive. Deep learning algorithms play a significant role
in bioinformatics. Various deep learning algorithms
can be used to do tasks such as sequence categor-
ization and prediction in a short amount of time.
Our research focused on predicting mutations and
computing similarities between protein sequences.
The proposed LSTM model obtained an average pre-
diction accuracy of 98% for all protein sequences
included in the study, that is, spike, replicase, puta-
tive, ORF1a, Nucleocapsid, and PolyProtein. This pre-
diction is beneficial in developing drugs for specific
altered protein sequences. Finally, this study has
shown that SARS-CoV2 sequence prediction is pos-
sible in the future. Bioinformatics tools and a deep
learning-based technique were used to examine and
visualize amino acid similarities, mutation prediction,
and phylogenetic analysis. Despite various research
still, there are various other challenges also, like con-
sidering the global information of proteins and find-
ing the changes in predicting mutation.

Authors’ contributions

All the authors have equal contributions to completing the
manuscript.

Availability of data and materials

All the data available with authors, we will supply as
demand comes from the reviewer.

Disclosure statement

There is no conflict of Interest between the author.

ORCID

Sachi Nandan Mohanty http://orcid.org/0000-0002-
4939-0797

References

Carvalho, P. C., Fischer, J. S., & Chen, E. I. (2009).
DomProtein explorer: A tool for exploring domain-
domain interactions in protein structures. Bioinformatics,
25(9), 1235–1236.

Centers for Disease Control and Prevention (2021).
Emerging SARS-CoV-2 variants. https://www.cdc.gov/cor-
onavirus/2019-ncov/more/science-and-research/scientific-
brief-emerging-variants.html.

Chen, J., Gao, K., Wang, R., & Wei, G.-W. (2021). Prediction
and mitigation of mutation threats to COVID-19 vac-
cines and antibody therapies. Chemical Science, 12(20),
6929–6948. doi:10.1039/d1sc01203g

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment
with high accuracy and high throughput. Nucleic Acids
Research, 32(5), 1792–1797. doi:10.1093/nar/gkh340

Gorbalenya, A. E., & Lauber, C. (2017). Phylogeny of viruses
reference module in biomedical sciences.

Hall, T. (1999). BioEdit: A user-friendly biological sequence
alignment editor and analysis program for Windows
95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

Hall, T. (2004). "BioEdit version 7.0. 0." Distributed by the
author, website: www. mbio. ncsu. edu/BioEdit/bioedit.
Html.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735–1780.

Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler,
J., Abfalterer, W., … Bhattacharya, T. (2020). Spike
mutation pipeline reveals the emergence of a more
transmissible form of SARS-CoV-2. bioRxiv. https://www.
biorxiv.org/content/10.1101/2020.04.29.069054v2.

Koumakis, L. (2020). Deep learning models in genomics.
Computational and Structural Biotechnology Journal, 18,
1466–1473. doi:10.1016/j.csbj.2020.06.017

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7:
Molecular evolutionary genetics analysis version 7.0 for
bigger datasets. Molecular Biology and Evolution, 33(7),
1870–1874. doi:10.1093/molbev/msw054

Lauring, A. S., & Hodcroft, E. B. (2021). Genetic variants of
SARS-CoV-2-what do they mean? JAMA, 325(6), 529–531.
doi:10.1001/jama.2020.27124

Lopez-Rincon, A., Tonda, A., Mendoza-Maldonado, L.,
Mulders, D. G. J. C., Molenkamp, R., Perez-Romero, C. A.,
… Kraneveld, A. D. (2021). Classi_cation and speci_c
primer design for accurate detection of SARS-CoV-2
using deep learning. Sci. Rep., Vol, 11(1), 1–11.

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., … Bi, Y.
(2020). Genomic characterisation and epidemiology of
2019 novel coronavirus: Implications for virus origins
and receptor binding. Lancet, 395(10224), 565–574.

Table 5. Average similarity percentage of amino acid
sequences (pairwise).

Proteins

Similarity between
Amino Acid
Sequences of
various SARS-
Coronavirus (%)

Nucleocapsid protein 99.9
ORF1a 99.8
Putative Spike Glycoprotein 99.7
Replicase 99.8
Spike Glycoprotein 99.9

116 S. SAH ET AL.



Mohamed, T., Sayed, S., Salah, A., Houssein, E. H. (2021).
Long short-term memory neural networks for RNA
viruses mutations prediction. Mathematical Problems in
Engineering, Article ID 9980347, 9. doi:10.1155/2021/
9980347

National Center for Biotechnology Information (NCBI)
Bethesda (MD). (1988). National Library of Medicine (US),
National Center for Biotechnology Information; https://
www.ncbi.nlm.nih.gov/. Accessed 30 January 2022.

Nawaz, M. S., Fournier-Viger, P., Shojaee, A., & Fujita, H.
(2021). Using artificial intelligence techniques for COVID-
19 genome analysis. Applied Intelligence (Dordrecht,
Netherlands), 51(5), 3086–3103. doi:10.1007/s10489-021-
02193-w

Nguyen, T. T., Pathirana, P. N., Nguyen, T., Nguyen, Q. V. H.,
Bhatti, A., Nguyen, D. C., … Abdelrazek, M. (2021).
Genomic mutations and changes in protein secondary
structure and solvent accessibility of SARS-CoV-2
(COVID-19 virus). Scientific Reports, 11(1), 1–16.

Pathan, R. K., Biswas, M., & Khandaker, M. U. (2020). Time
series prediction of COVID-19 by mutation rate analysis
using recurrent neural network-based LSTM model.
Chaos, Solitons, and Fractals, 138, 110018. doi:10.1016/j.
chaos.2020.110018

Rambaut, A., Holmes, E. C., O’Toole, �A., Hill, V., McCrone,
J. T., Ruis, C., … Pybus, O. G. (2020). A dynamic nomen-
clature proposal for SARS-CoV-2 lineages to assist gen-
omic epidemiology. Nature Microbiology, 5(11), 1403–
1407. doi:10.1038/s41564-020-0770-5

Sah, S., Dr.Surendiran, B., Dr.Dhanalakshmi, R., & Kamerkar,
A. (2021). Classification and alignment of SARS-CoV2
sequences using machine learning approach.
International Journal of Advanced Research in
Management, Architecture, Technology and Engineering,
7, 34–44.

Sah, S., Surendiran, B., & Dhanalakshmi, R. (2023). Genomic
sequence similarity of SARS-CoV2 nucleotide sequences
using biopython: Key for finding cure and vaccines. In
Application of deep learning methods in healthcare and
medical science (pp. 211–223). USA: Apple Academic
Press.

Shendure, J., & Ji, H. (2008). Next-generation DNA sequenc-
ing. Nature Biotechnology, 26(10), 1135–1145. doi:10.
1038/nbt1486

Sievers, F., & Higgins, D. G. (2018). Clustal Omega for mak-
ing accurate alignments of many protein sequences.
Protein Science: A Publication of the Protein Society, 27(1),
135–145. doi:10.1002/pro.3290

Smith, Y. (2019). Amino acids and protein sequences news.
https://www.news-medical.net/life-sciences/Amino-Acids-
and-Protein-Sequences.aspx. Accessed 26 Feb 2019

Stranger, B. E., & Dermitzakis, E. T. (2006). From DNA to
RNA to disease and back: The ‘central dogma’ of regula-
tory disease variation Hum. Genomics, 2(6), 383–390.

Taly, J. F., Magis, C., Bussotti, G., Chang, J. M., Di Tommaso,
P., Erb, I., … Notredame, C. (2011). The coffee served
blind: A new view on the multiple sequence alignment
problem. PLoS One. 6(12), e28817. doi:10.1371/journal.
pone.0028817

Tomita, N., Mori, H., & Mochizuki, T. (2015). An efficient
way of selecting multiple sequences for BioEdit.
Bioscience, Biotechnology, and Biochemistry, 79(12), 2013–
2015.

Wang, R., Chen, J., Gao, K., & Wei, G.-W. (2021). Vaccine-
escape and fast-growing mutations in the United
Kingdom, the United States, Singapore, Spain, India, and
other COVID-19-devastated countries. Genomics, 113(4),
2158–2170. doi:10.1016/j.ygeno.2021.05.006

Whata, A., & Chimedza, C. (2021). Deep learning for SARS
COV-2 genome sequences. IEEE Access: Practical
Innovations, Open Solutions, 9, 59597–59611. doi:10.
1109/ACCESS.2021.3073728

World Health Organization (2021). Tracking SARS-CoV-2
variants. https://www.who.int/en/activities/tracking-SARS-
CoV-2-variants/.

Xu, J., Guo, H. C., Wei, Y. Q., Shu, L., Wang, J., Li, J. S., …
Sun, S. Q. (2015). Phylogenetic analysis of canine parvo-
virus isolates from Sichuan and Gansu provinces of
China in 2011. Transboundary and Emerging Diseases, 62,
91–95.

Yan, S., & Wu, G. (2021). Neural network to predict prob-
abilistically possible mutations in hemagglutinins from
Eurasia H1 influenza A virus. In 2nd International
Conference on Computer Vision, Image, and Deep
Learning, vol. 11911, pp. 283–289. SPIE.

Zhou, B., Zhou, H., Zhang, X., Xu, X., Chai, Y., Zheng, Z., …
Zhou, Z. (2023). TEMPO: A transformer-based mutation
prediction framework for SARS-CoV-2 evolution.
Computers in Biology and Medicine, 152, 12–21.

ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 117



Annexure 1

Table A1. Detailed description of protein sequence data.
Protein Name Aligned Protein Sequences with accession number Each Sequence Length after Alignment

Nucleocapsid >nucleocapsid protein AY485277 426
>nucleocapsid protein HQ890531
>nucleocapsid protein HQ890533
>nucleocapsid protein KF514406
>nucleocapsid protein AY572038
>nucleocapsid protein AY595412
>nucleocapsid protein DQ071615
>nucleocapsid protein EU371559
>nucleocapsid protein EU371561
>nucleocapsid protein EU371563
>nucleocapsid protein EU371564
>nucleocapsid protein FJ882953
>nucleocapsid protein FJ882959
>nucleocapsid protein HQ890526
>nucleocapsid protein HQ890528
>nucleocapsid protein HQ890529
>nucleocapsid protein HQ890539
>nucleocapsid protein HQ890542
>nucleocapsid protein JF292905
>nucleocapsid protein JF292911
>nucleocapsid protein JF2929113
>nucleocapsid protein JF292914
>nucleocapsid protein JF292916
>nucleocapsid protein JF292917
>nucleocapsid protein JF292920
>nucleocapsid protein N AY278488
>nucleocapsid protein N AP006558
>nucleocapsid protein N AP006560
>nucleocapsid protein N AY508724
>nucleocapsid protein N AY772062
>nucleocapsid protein N AY864805
>nucleocapsid protein NAY864806

Putative spike gylcoprotein >putative E2 glycoprotein precursor AY345986 1275
>putative E2 glycoprotein precursor AY345987
>putative E2 glycoprotein precursor AY345988
>putative E2 glycoprotein precursor AY278554
>putative E2 glycoprotein precursor AY350750
>putative E2 glycoprotein precursor AY357075
>putative E2 glycoprotein precursor AY357076
>putative spike glycoprotein AY282752
>putative spike glycoprotein AY502923
>putative spike glycoprotein AY502924
>putative spike glycoprotein AY502925
>putative spike glycoprotein AY502926
>putative spike glycoprotein AY502928
>putative spike glycoprotein AY502929
>putative spike glycoprotein AY502930
>putative spike glycoprotein AY502931
>putative spike glycoprotein AY502932
>putative spike glycoprotein S AY291451
>putativespikeglycoproteinAY502637
>S protein AY278741
>S protein AY286320
>S protein AY338175
>S protein AY348314
>S protein DQ497008
>S proteinAY714217
>spike AY463059
>spike AY463060

Replicase >replicase 1AB AY274119 4448
>replicase 1ab AY654624
>replicase 1AB AY686863
>replicase 1AB AY686864
>replicase 1AB polyprotein FJ959407
>replicase p1AB AY572034
>replicase p1AB AY572035
>replicase polyprotein 1a KF514403
>replicase polyprotein 1a KF514404
>replicase polyprotein 1a KF514406
>replicase polyprotein 1a KF514409
>replicase polyprotein 1a KF514411
>replicase polyprotein 1a KF514415
>replicase polyprotein 1a KF514418

(continued)
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Table A1. Continued.
Protein Name Aligned Protein Sequences with accession number Each Sequence Length after Alignment

>replicase polyprotein 1a KF514420
>replicase polyprotein 1a KF514422
>replicase polyprotein 1a KF514423
>replicase polyprotein 1a KF514388
>replicase polyprotein 1a KF514391
>replicase polyprotein 1a KF514394
>replicase polyprotein 1a KF514398
>replicase polyprotein 1a KF514399
>replicase polyprotein 1a KF514400
>replicase polyprotein 1ab KF514399
>replicase polyprotein 1ab KF514403
>replicase polyprotein 1ab KF514404
>replicase polyprotein 1ab KF514406
>replicase polyprotein 1ab KF514409
>replicase polyprotein 1ab KF514411
>replicase polyprotein 1ab KF514415
>replicase polyprotein 1ab KF514418
>replicase polyprotein 1ab KF514420
>replicase polyprotein 1ab KF514388
>replicase polyprotein 1ab KF514389
>replicase polyprotein 1ab KF514391
>replicase polyprotein 1ab KF514394
>replicase polyprotein 1ab KF514398
>replicase polyprotein 1ab KF514400
>replicase polyprotein 1ab KF514422
>replicase polyprotein 1ab KF514423
>replicase polyprotein 1aKF514389
>replicase1ABNC004718
>replicasepolyprotein1abKF514937
>replicasepolyprotein1aKF514937

ORF1a >ORF1a AY310120 68
>orf1a polyprotein AY278488
>orf1a polyprotein AY278489
>orf1a polyprotein AY286320
>orf1a polyprotein AY291451
>orf1a polyprotein AY345986
>orf1a polyprotein AY345987
>orf1a polyprotein AY345988
>orf1a polyprotein AY485277
>orf1a polyprotein AY485278
>orf1a polyprotein AY502923
>orf1a polyprotein AY502924
>orf1a polyprotein AY502925
>orf1a polyprotein AY502926
>orf1a polyprotein AY502928
>orf1a polyprotein AY502929
>orf1a polyprotein AY502930
>orf1a polyprotein AY502931
>orf1a polyprotein AY502932
>orf1a polyprotein AY508724
>orf1a polyprotein AY772062
>orf1a polyprotein AY864805
>orf1a polyprotein DQ182595
>orf1a polyprotein DQ898174
>orf1a polyprotein EU371559
>orf1a polyprotein EU371560
>orf1a polyprotein EU371561
>orf1a polyprotein EU371562
>orf1a polyprotein EU371563
>orf1a polyprotein EU371564
>orf1a polyprotein FJ882943
>orf1a polyprotein FJ882953
>orf1a polyprotein FJ882958
>orf1a polyprotein FJ882959
>orf1a polyprotein FJ882961
>orf1a polyprotein FJ882962
>orf1a polyprotein FJ882963
>orf1a polyproteinAY864806
>orf1ab AY278488
>orf1ab AY278489
>orf1ab EU371559
>orf1ab EU371560
>orf1ab EU371561
>orf1ab EU371562
>orf1ab EU371563
>orf1ab EU371564
>orf1ab polyprotein AY286320

(continued)
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Table A1. Continued.
Protein Name Aligned Protein Sequences with accession number Each Sequence Length after Alignment

>orf1ab polyprotein AY485277
>orf1ab polyprotein AY485278
>orf1ab polyprotein AY772062
>orf1ab polyprotein AY864805
>orf1ab polyprotein AY864806
>orf1ab polyprotein DQ182595
>orf1ab polyprotein DQ898174
>orf1ab polyprotein FJ882943
>orf1ab polyprotein FJ882953
>orf1ab polyprotein FJ882958
>orf1ab polyprotein FJ882959
>orf1ab polyprotein FJ882961
>orf1ab polyprotein FJ882962
>orf1ab polyprotein FJ882963
>orf1abAY463059
>orf1apolyproteinAY502637

Spike >spike glycoprotein AY274119 103
>spike glycoprotein AY310120
>spike glycoprotein KF514403
>spike glycoprotein KF514404
>spike glycoprotein KF514406
>spike glycoprotein KF51440620
>spike glycoprotein KF514409
>spike glycoprotein KF514411
>spike glycoprotein KF514415
>spike glycoprotein KF514418
>spike glycoprotein KF514422
>spike glycoprotein AY390556
>spike glycoprotein AY572034
>spike glycoprotein AY572035
>spike glycoprotein AY572038
>spike glycoprotein AY654624
>spike glycoprotein AY686864
>spike glycoprotein AY686863
>spike glycoprotein DQ898174
>spike glycoprotein KF514388
>spike glycoprotein KF514389
>spike glycoprotein KF514391
>spike glycoprotein KF514394
>spike glycoprotein KF514398
>spike glycoprotein KF514399
>spike glycoprotein KF514400
>spike glycoprotein KF514423
>spike glycoprotein precursor HQ890530
>spike glycoprotein precursor HQ890531
>spike glycoprotein precursor HQ890532
>spike glycoprotein precursor HQ890533
>spike glycoprotein precursor HQ890534
>spike glycoprotein precursor HQ890535
>spike glycoprotein precursor HQ890536
>spike glycoprotein precursor HQ890537
>spike glycoprotein precursor HQ890538
>spike glycoprotein precursor FJ882943
>spike glycoprotein precursor FJ882953
>spike glycoprotein precursor FJ882958
>spike glycoprotein precursor FJ882959
>spike glycoprotein precursor FJ882961
>spike glycoprotein precursor FJ882962
>spike glycoprotein precursor FJ882963
>spike glycoprotein precursor HQ890526
>spike glycoprotein precursor HQ890528
>spike glycoprotein precursor HQ890529
>spike glycoprotein precursor HQ890539
>spike glycoprotein precursor HQ890540
>spike glycoprotein precursor HQ890541
>spike glycoprotein precursor HQ890542
>spike glycoprotein precursor HQ890543
>spike glycoprotein precursor HQ890545
>spike glycoprotein precursor HQ890546
>spike glycoprotein precursor JF292903
>spike glycoprotein precursor JF292904
>spike glycoprotein precursor JF292905
>spike glycoprotein precursor JF292906
>spike glycoprotein precursor JF292907
>spike glycoprotein precursor JF292908
>spike glycoprotein precursor JF292910
>spike glycoprotein precursor JF292911

(continued)
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Table A1. Continued.
Protein Name Aligned Protein Sequences with accession number Each Sequence Length after Alignment

>spike glycoprotein precursor JF292913
>spike glycoprotein precursor JF292914
>spike glycoprotein precursor JF292915
>spike glycoprotein precursor JF292916
>spike glycoprotein precursor JF292917
>spike glycoprotein precursor JF292918
>spike glycoprotein precursor JF292919
>spike glycoprotein precursor JF292920
>spike glycoprotein precursor JF292921
>spike glycoprotein precursor JF292922
>spike glycoprotein precursorHQ890527
>spike glycoprotein precursorJF292902
>spike glycoprotein S AY278488
>spike glycoprotein S AY278489
>spike glycoprotein S AY508724
>spike glycoprotein S AY772062
>spike glycoprotein S AY864805
>spike glycoprotein S EU371559
>spike glycoprotein S EU371560
>spike glycoprotein S EU371561
>spike glycoprotein S EU371562
>spike glycoprotein S EU371563
>spike glycoprotein S EU371564
>spike glycoprotein SAY864806
>spike protein AY485277
>spike protein AY485278
>spike protein DQ182595
>spike protein S AY291315
>spike protein S AP006557
>spike protein S AP006558
>spike protein S AP006559
>spike protein S AP006560
>spike protein S AP006561
>spike protein SAY323977
>spike protein SAY427439
>spikeglycoproteinKF514937
>spikeglycoproteinNC004718
>spikeproteinAB257344
>spikeglycoproteinprecursorJF292912
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